

Gorilla’s Documentation

Welcome! If you are just getting started, a recommended first read is the
Overview as it shortly covers the why, what, and how’s of this
library. From there, the Installation then the Tutorial sections
should get you up to speed with the basics required to use it.

Looking how to use a specific function, class, or method? The whole public
interface is described in the API Reference section.

Please report bugs and suggestions on GitHub [https://github.com/christophercrouzet/gorilla].

User’s Guide

	Overview
	Features

	Usage

	Installation
	Installing pip

	System-Wide Installation

	Virtualenv

	Development Version

	Tutorial
	Creating a Single Patch

	Creating Multiple Patches at Once

	Overwriting Attributes at the Destination

	Stack Ordering

	Finding and Applying the Patches

	Dynamic Patching

	A Word of Caution

	API Reference
	Core

	Decorators

	Utilities

Developer’s Guide

	Running the Tests
	unittest

	tox

	coverage

Additional Information

	Changelog
	Unreleased

	v0.4.0 (2021-04-17)

	v0.3.0 (2017-01-18)

	v0.2.0 (2016-12-20)

	v0.1.0 (2014-06-29)

	v0.0.1 (2014-06-21)

	Versioning

	License

	Out There

Overview

Monkey patching is the process of modifying module and class attributes at
runtime with the purpose of replacing or extending third-party code.

Although not a recommended practice, it is sometimes useful to fix or modify
the behaviour of a piece of code from a third-party library, or to extend its
public interface while making the additions feel like they are built-in into
the library.

The Python language makes monkey patching extremely easy but the advantages of
Gorilla are multiple, not only in assuring a consistent behaviour on both
Python 2 and Python 3 versions, but also in preventing common source of errors,
and making the process both intuitive and convenient even when faced with
large numbers of patches to create.

Features

	intuitive and convenient decorator approach to create patches.

	can create patches for all class or module members at once.

	compatible with both Python 2 and Python 3.

	customizable behaviour.

Usage

Thanks to the dynamic nature of Python that makes monkey patching possible, the
process happens at runtime without ever having to directly modify the source
code of the third-party library:

>>> import gorilla
>>> import destination
>>> @gorilla.patches(destination.Class)
... class MyClass(object):
... def method(self):
... print("Hello")
... @classmethod
... def class_method(cls):
... print("world!")

The code above creates two patches, one for each member of the class
MyClass, but does not apply them yet. In other words, they define the
information required to carry on the operation but are not yet inserted into
the specified destination class destination.Class.

Such patches created with the decorators can then be automatically retrieved by
recursively scanning a package or a module, then applied:

>>> import gorilla
>>> import mypackage
>>> patches = gorilla.find_patches([mypackage])
>>> for patch in patches:
... gorilla.apply(patch)

See also

The Tutorial section for more detailed examples and explanations on
how to use Gorilla.

Installation

Gorilla doesn’t have any requirement outside of the Python interpreter. Any of
the following Python versions is supported: 2.7, 3.3, 3.4, 3.5, and 3.6.

Installing pip

The recommended 1 approach for installing a Python package such as Gorilla
is to use pip [https://pip.pypa.io], a package manager for projects written in Python. If pip
is not already installed on your system, you can do so by following these
steps:

	Download get-pip.py [https://raw.github.com/pypa/pip/master/contrib/get-pip.py].

	Run python get-pip.py in a shell.

Note

The installation commands described in this page might require sudo
privileges to run successfully.

System-Wide Installation

Installing globally the most recent version of Gorilla can be done with
pip:

$ pip install gorilla

Or using easy_install [https://setuptools.readthedocs.io/en/latest/easy_install.html] (provided with setuptools [https://github.com/pypa/setuptools]):

$ easy_install gorilla

Virtualenv

If you’d rather make Gorilla only available for your specific project, an
alternative approach is to use virtualenv [https://virtualenv.pypa.io]. First, make sure that it is
installed:

$ pip install virtualenv

Then, an isolated environment needs to be created for your project before
installing Gorilla in there:

$ mkdir myproject
$ cd myproject
$ virtualenv env
New python executable in /path/to/myproject/env/bin/python
Installing setuptools, pip, wheel...done.
$ source env/bin/activate
$ pip install gorilla

At this point, Gorilla is available for the project myproject as long as
the virtual environment is activated.

To exit the virtual environment, run:

$ deactivate

Note

Instead of having to activate the virtual environment, it is also possible
to directly use the env/bin/python, env/bin/pip, and the other
executables found in the folder env/bin.

Note

For Windows, some code samples might not work out of the box. Mainly,
activating virtualenv is done by running the command
env\Scripts\activate instead.

Development Version

To stay cutting edge with the latest development progresses, it is possible to
directly retrieve the source from the repository with the help of Git [https://git-scm.com]:

$ git clone https://github.com/christophercrouzet/gorilla.git
$ cd gorilla
$ pip install --editable .[dev]

Note

The [dev] part installs additional dependencies required to assist
development on Gorilla.

	1

	See the Python Packaging User Guide [https://packaging.python.org/current/]

Tutorial

In the end Gorilla is nothing more than a fancy wrapper around Python’s
setattr() [https://docs.python.org/library/functions.html#setattr] function and thus requires to define patches, represented by the
class Patch, containing the destination object, the attribute name at
the destination, and the actual value to set.

The Patch class can be used directly if the patching information are
only known at runtime, as described in the section Dynamic Patching, but
otherwise a set of decorators are available to make the whole process more
intuitive and convenient.

The recommended approach involving decorators is to be done in two steps:

	create a single patch with the patch()
decorator and/or multiple patches using
patches().

	find and apply the patches through the
find_patches() and apply() functions.

Creating a Single Patch

In order to make a function my_function() available from within a
third-party module destination, the first step is to create a new patch by
decorating our function:

>>> import gorilla
>>> import destination
>>> @gorilla.patch(destination)
... def my_function():
... print("Hello world!")

This step only creates the Patch object containing the patch
information but does not inject the function into the destination module just
yet. The apply() function needs to be called for that to happen, as shown
in the section Finding and Applying the Patches.

The defaut behaviour is for the patch to inject the function at the destination
using the name of the decorated object, that is 'my_function'. If a
different name is desired but changing the function name is not possible, then
it can be done via the parameter name:

>>> import gorilla
>>> import destination
>>> @gorilla.patch(destination, name='better_function')
... def my_function():
... print("Hello world!")

After applying the patch, the function will become accessible through a call to
destination.better_function().

A patch’s destination can not only be a module as shown above, but also an
existing class:

>>> import gorilla
>>> import destination
>>> @gorilla.patch(destination.Class)
... def my_method(self):
... print("Hello")
>>> @gorilla.patch(destination.Class)
... @classmethod
... def my_class_method(cls):
... print("world!")

Creating Multiple Patches at Once

As the number of patches grows, the process of defining a decorator for each
individual patch can quickly become cumbersome. Instead, another decorator
patches() is available to create a batch of patches
(tongue-twister challenge: repeat “batch of patches” 10 times):

>>> import gorilla
>>> import destination
>>> @gorilla.patches(destination.Class)
... class MyClass(object):
... def method(self):
... print("Hello")
... @classmethod
... def class_method(cls):
... print("world")
... @staticmethod
... def static_method():
... print("!")

The patches() decorator iterates through all the members of the
decorated class, by default filtered using the default_filter() function,
while creating a patch for each of them.

Each patch created in this manner inherits the properties defined by the root
decorator but it is still possible to override them using any of the
destination(), name(), settings(), and filter()
modifier decorators:

>>> import gorilla
>>> import destination
>>> @gorilla.patches(destination.Class)
... class MyClass(object):
... @gorilla.name('better_method')
... def method(self):
... print("Hello")
... @gorilla.settings(allow_hit=True)
... @classmethod
... def class_method(cls):
... print("world")
... @gorilla.filter(False)
... @staticmethod
... def static_method():
... print("!")

In the example above, the method’s name is overriden to 'better_method',
the class method is allowed to overwrite an attribute with the same name at the
destination, and the static method is to be filtered out during the discovery
process described in Finding and Applying the Patches, leading to no patch being
created for it.

Note

The same operation can also be used to create a patch for each member of a
module but, since it is not possible to decorate a module, the function
create_patches() needs to be directly used instead.

Overwriting Attributes at the Destination

If there was to be an attribute at the patch’s destination already existing
with the patch’s name, then the patching process can optionally override the
original attribute after storing a copy of it. This way, the original attribtue
remains accessible from within our code with the help of the
get_original_attribute() function:

>>> import gorilla
>>> import destination
>>> settings = gorilla.Settings(allow_hit=True)
>>> @gorilla.patch(destination, settings=settings)
... def function():
... print("Hello world!")
... # We're overwriting an existing function here,
... # preserve its original behaviour.
... original = gorilla.get_original_attribute(destination, 'function')
... return original()

Note

The default settings of a patch do not allow attributes at the destination
to be overwritten. For such a behaviour, the attribute
Settings.allow_hit needs to be set to True.

Stack Ordering

The order in which the decorators are applied does matter. The
patch() decorator can only be aware of the decorators defined below it.

>>> import gorilla
>>> import destination
>>> @gorilla.patch(destination.Class)
... @staticmethod
... def my_static_method_1():
... print("Hello")
>>> @staticmethod
... @gorilla.patch(destination.Class)
... def my_static_method_2():
... print("world!")

Here, only the static method my_static_method_1() will be injected as
expected with the decorator staticmethod while the other one will result
in an invalid definition since it will be interpreted as a standard method but
doesn’t define any parameter referring to the class object such as self.

Finding and Applying the Patches

Once that the patches are created with the help of the decorators, the next
step is to (recursively) scan the modules and packages to retrieve them. This
is easily achieved with the find_patches() function.

Finally, each patch can be applied using the apply() function.

>>> import gorilla
>>> import mypackage
>>> patches = gorilla.find_patches([mypackage])
>>> for patch in patches:
... gorilla.apply(patch)

Dynamic Patching

In the case where patches need to be created dynamically, meaning that the
patch source objects and/or destinations are not known until runtime, then it
is possible to directly use the Patch class.

>>> import gorilla
>>> import destination
>>> def my_function():
... print("Hello world!")
>>> patch = gorilla.Patch(destination, 'better_function', my_function)
>>> gorilla.apply(patch)

Note

Special precaution is advised when directly setting the Patch.obj
attribute. See the warning note in the class Patch for more
details.

A Word of Caution

The process of Monkey Patching is at the same time both incredibly powerful
and dangerous. It makes it easy to improve things on the surface but makes it
even easier to cause troubles if done inappropriately.

Mostly, inserting new attributes by prefixing their name to avoid (future?)
name clashes is usually fine, but replacing existing attributes should be
avoided like the plague unless you really have to and know what you are
doing. That is, if you do not want ending up being fired because you broke
everyone else’s code.

As a safety measure, Gorilla has its Settings.allow_hit attribute set
to False by default, which raises an exception whenever it detects an
attempt at overwriting an existing attribute.

If you still want to go ahead with allowing hits, a second measure enabled
by default through the Settings.store_hit attribute is to store the
overwriten attribute under a different name to have it still accessible using
the function get_original_attribute().

But still, avoid it if you can.

You’ve been warned.

API Reference

The whole public interface of Gorilla is described here.

All of the library’s content is accessible from within the only module
gorilla.

The classes Settings, Patch, and the function apply form
the core of the library and cover all the requirements for monkey
patching.

For intuitivity and convenience reasons, decorators and
utility functions are also provided.

	Core

	Decorators

	Utilities

Core

	Settings

	Define the patching behaviour.

	Patch

	Describe all the information required to apply a patch.

	apply

	Apply a patch.

	
class gorilla.Settings(**kwargs)[source]

	Define the patching behaviour.

	
allow_hit

	A hit occurs when an attribute at the destination already exists with
the name given by the patch. If False, the patch process won’t
allow setting a new value for the attribute by raising an exception.
Defaults to False.

	Type

	bool

	
store_hit

	If True and allow_hit is also set to True, then any
attribute at the destination that is hit is stored under a different
name before being overwritten by the patch. Defaults to True.

	Type

	bool

	
__init__(**kwargs)[source]

	Constructor.

	Parameters

	kwargs – Keyword arguments, see the attributes.

	
class gorilla.Patch(destination, name, obj, settings=None)[source]

	Describe all the information required to apply a patch.

	
destination

	Patch destination.

	Type

	obj

	
name

	Name of the attribute at the destination.

	Type

	str

	
obj

	Attribute value.

	Type

	obj

	
settings

	Settings. If None, the default settings are used.

	Type

	gorilla.Settings or None

Warning

It is highly recommended to use the output of the function
get_attribute() for setting the attribute obj. This will
ensure that the descriptor protocol is bypassed instead of possibly
retrieving attributes invalid for patching, such as bound methods.

	
__init__(destination, name, obj, settings=None)[source]

	Constructor.

	Parameters

	
	destination (object) – See the destination attribute.

	name (str) – See the name attribute.

	obj (object) – See the obj attribute.

	settings (gorilla.Settings) – See the settings attribute.

	
gorilla.apply(patch, id='default')[source]

	Apply a patch.

The patch’s obj attribute is injected into the patch’s
destination under the patch’s name.

This is a wrapper around calling
setattr(patch.destination, patch.name, patch.obj).

	Parameters

	
	patch (gorilla.Patch) – Patch.

	id (str) – When applying a stack of patches on top of a same attribute, this
identifier allows to pinpoint a specific original attribute if needed.

	Raises

	RuntimeError – Overwriting an existing attribute is not allowed when the setting
Settings.allow_hit is set to True.

Note

If both the attributes Settings.allow_hit and
Settings.store_hit are True but that the target attribute seems
to have already been stored, then it won’t be stored again to avoid losing
the original attribute that was stored the first time around.

	
gorilla.revert(patch)[source]

	Revert a patch.

	Parameters

	patch (gorilla.Patch) – Patch.

Note

This is only possible if the attribute Settings.store_hit was set
to True when applying the patch and overriding an existing attribute.

Decorators

	patch

	Decorator to create a patch.

	patches

	Decorator to create a patch for each member of a module or a class.

	destination

	Modifier decorator to update a patch’s destination.

	name

	Modifier decorator to update a patch’s name.

	settings

	Modifier decorator to update a patch’s settings.

	filter

	Modifier decorator to force the inclusion or exclusion of an attribute.

	
gorilla.patch(destination, name=None, settings=None)[source]

	Decorator to create a patch.

The object being decorated becomes the obj attribute of the
patch.

	Parameters

	
	destination (object) – Patch destination.

	name (str) – Name of the attribute at the destination.

	settings (gorilla.Settings) – Settings.

	Returns

	The decorated object.

	Return type

	object

See also

Patch

	
gorilla.patches(destination, settings=None, traverse_bases=True, filter=<function default_filter>, recursive=True, use_decorators=True)[source]

	Decorator to create a patch for each member of a module or a class.

	Parameters

	
	destination (object) – Patch destination.

	settings (gorilla.Settings) – Settings.

	traverse_bases (bool) – If the object is a class, the base classes are also traversed.

	filter (function) – Attributes for which the function returns False are skipped. The
function needs to define two parameters: name, the attribute name,
and obj, the attribute value. If None, no attribute is skipped.

	recursive (bool) – If True, and a hit occurs due to an attribute at the destination
already existing with the given name, and both the member and the
target attributes are classes, then instead of creating a patch
directly with the member attribute value as is, a patch for each of its
own members is created with the target as new destination.

	use_decorators (bool) – Allows to take any modifier decorator into consideration to allow for
more granular customizations.

	Returns

	The decorated object.

	Return type

	object

Note

A ‘target’ differs from a ‘destination’ in that a target represents an
existing attribute at the destination about to be hit by a patch.

See also

Patch, create_patches()

	
gorilla.destination(value)[source]

	Modifier decorator to update a patch’s destination.

This only modifies the behaviour of the create_patches() function
and the patches() decorator, given that their parameter
use_decorators is set to True.

	Parameters

	value (object) – Patch destination.

	Returns

	The decorated object.

	Return type

	object

	
gorilla.name(value)[source]

	Modifier decorator to update a patch’s name.

This only modifies the behaviour of the create_patches() function
and the patches() decorator, given that their parameter
use_decorators is set to True.

	Parameters

	value (object) – Patch name.

	Returns

	The decorated object.

	Return type

	object

	
gorilla.settings(**kwargs)[source]

	Modifier decorator to update a patch’s settings.

This only modifies the behaviour of the create_patches() function
and the patches() decorator, given that their parameter
use_decorators is set to True.

	Parameters

	kwargs – Settings to update. See Settings for the list.

	Returns

	The decorated object.

	Return type

	object

	
gorilla.filter(value)[source]

	Modifier decorator to force the inclusion or exclusion of an attribute.

This only modifies the behaviour of the create_patches() function
and the patches() decorator, given that their parameter
use_decorators is set to True.

	Parameters

	value (bool) – True to force inclusion, False to force exclusion, and None
to inherit from the behaviour defined by create_patches() or
patches().

	Returns

	The decorated object.

	Return type

	object

Utilities

	default_filter

	Attribute filter.

	create_patches

	Create a patch for each member of a module or a class.

	find_patches

	Find all the patches created through decorators.

	get_attribute

	Retrieve an attribute while bypassing the descriptor protocol.

	get_original_attribute

	Retrieve an overriden attribute that has been stored.

	DecoratorData

	Decorator data.

	get_decorator_data

	Retrieve any decorator data from an object.

	
gorilla.default_filter(name, obj)[source]

	Attribute filter.

It filters out module attributes, and also methods starting with an
underscore _.

This is used as the default filter for the create_patches() function
and the patches() decorator.

	Parameters

	
	name (str) – Attribute name.

	obj (object) – Attribute value.

	Returns

	Whether the attribute should be returned.

	Return type

	bool

	
gorilla.create_patches(destination, root, settings=None, traverse_bases=True, filter=<function default_filter>, recursive=True, use_decorators=True)[source]

	Create a patch for each member of a module or a class.

	Parameters

	
	destination (object) – Patch destination.

	root (object) – Root object, either a module or a class.

	settings (gorilla.Settings) – Settings.

	traverse_bases (bool) – If the object is a class, the base classes are also traversed.

	filter (function) – Attributes for which the function returns False are skipped. The
function needs to define two parameters: name, the attribute name,
and obj, the attribute value. If None, no attribute is skipped.

	recursive (bool) – If True, and a hit occurs due to an attribute at the destination
already existing with the given name, and both the member and the
target attributes are classes, then instead of creating a patch
directly with the member attribute value as is, a patch for each of its
own members is created with the target as new destination.

	use_decorators (bool) – True to take any modifier decorator into consideration to allow for
more granular customizations.

	Returns

	The patches.

	Return type

	list of gorilla.Patch

Note

A ‘target’ differs from a ‘destination’ in that a target represents an
existing attribute at the destination about to be hit by a patch.

See also

patches()

	
gorilla.find_patches(modules, recursive=True)[source]

	Find all the patches created through decorators.

	Parameters

	
	modules (list of module) – Modules and/or packages to search the patches in.

	recursive (bool) – True to search recursively in subpackages.

	Returns

	Patches found.

	Return type

	list of gorilla.Patch

	Raises

	TypeError – The input is not a valid package or module.

See also

patch(), patches()

	
gorilla.get_attribute(obj, name)[source]

	Retrieve an attribute while bypassing the descriptor protocol.

As per the built-in getattr() [https://docs.python.org/library/functions.html#getattr] function, if the input object is a class
then its base classes might also be searched until the attribute is found.

	Parameters

	
	obj (object) – Object to search the attribute in.

	name (str) – Name of the attribute.

	Returns

	The attribute found.

	Return type

	object

	Raises

	AttributeError – The attribute couldn’t be found.

	
gorilla.get_original_attribute(obj, name, id='default')[source]

	Retrieve an overriden attribute that has been stored.

	Parameters

	
	obj (object) – Object to search the attribute in.

	name (str) – Name of the attribute.

	id (str) – Identifier of the original attribute to retrieve from the stack.

	Returns

	The attribute found.

	Return type

	object

	Raises

	AttributeError – The attribute couldn’t be found.

See also

Settings.allow_hit

	
class gorilla.DecoratorData[source]

	Decorator data.

	
patches

	Patches created through the decorators.

	Type

	list of gorilla.Patch

	
override

	Any overriding value defined by the destination(), name(),
and settings() decorators.

	Type

	dict

	
filter

	Value defined by the filter() decorator, if any, or None
otherwise.

	Type

	bool or None

	
__init__()[source]

	Constructor.

	
gorilla.get_decorator_data(obj, set_default=False)[source]

	Retrieve any decorator data from an object.

	Parameters

	
	obj (object) – Object.

	set_default (bool) – If no data is found, a default one is set on the object and returned,
otherwise None is returned.

	Returns

	The decorator data or None.

	Return type

	gorilla.DecoratorData

Running the Tests

After making any code change in Gorilla, tests need to be evaluated to ensure
that the library still behaves as expected.

Note

Some of the commands below are wrapped into make targets for
convenience, see the file Makefile.

unittest

The tests are written using Python’s built-in unittest [https://docs.python.org/library/unittest.html] module. They are
available in the tests directory and can be fired through the
tests/run.py file:

$ python tests/run.py

It is possible to run specific tests by passing a space-separated list of
partial names to match:

$ python tests/run.py ThisTestClass and_that_function

The unittest’s command line interface is also supported:

$ python -m unittest discover -s tests -v

Finally, each test file is a standalone and can be directly executed.

tox

Test environments have been set-up with tox [https://tox.readthedocs.io] to allow testing Gorilla against
each supported version of Python:

$ tox

coverage

The package coverage [https://coverage.readthedocs.io] is used to help localize code snippets that could
benefit from having some more testing:

$ coverage run --source gorilla -m unittest discover -s tests
$ coverage report
$ coverage html

In no way should coverage be a race to the 100% mark since it is not
always meaningful to cover each single line of code. Furthermore, having some
code fully covered isn’t synonym to having quality tests. This is our
responsability, as developers, to write each test properly regardless of the
coverage status.

Changelog

Version numbers comply with the Sementic Versioning Specification (SemVer) [http://semver.org].

Unreleased [https://github.com/christophercrouzet/gorilla/compare/v0.4.0...HEAD]

v0.4.0 [https://github.com/christophercrouzet/gorilla/compare/v0.3.0...v0.4.0] (2021-04-17)

Added

	Implement a new public function to revert a patch.

	Support applying stacks of patches.

	Include the utf-8 shebang to all source files.

	Enforce Python 3 compatibility with the __future__ module.

	Testing with Python versions 3.7, 3,8, and 3.9.

	Set the __all__ attribute.

	Make use of styling and linting tools.

Removed

	Testing with Python version 3.3.

	Testing of the representation outputs.

Changed

	Update the setup file.

	Rework the project’s metadata.

	Shorten docstrings for non-public functions.

	Make minor tweaks to the code.

	Use the ‘new’ string formatting method.

	Update the contact’s email.

Fixed

	Fix __weakref__ showing up in the doc.

	Fix the changelog reference.

v0.3.0 [https://github.com/christophercrouzet/gorilla/compare/v0.2.0...v0.3.0] (2017-01-18)

Added

	Add the decorator data to the public interface.

	Add support for coverage and tox.

	Add continuous integration with Travis and coveralls.

	Add a few bling-bling badges to the readme.

	Add a Makefile to regroup common actions for developers.

Changed

	Improve the documentation.

	Improve the unit testing workflow.

	Remove the __slots__ attribute from the Settings and Patch
classes.

	Refocus the content of the readme.

	Define the ‘long_description’ and ‘extras_require’ metadata to setuptools’
setup.

	Update the documentation’s Makefile with a simpler template.

	Rework the ‘.gitignore’ files.

	Rename the changelog to ‘CHANGELOG’!

	Make minor tweaks to the code.

Fixed

	Fix the settings not being properly inherited.

	Fix the decorator data not supporting class inheritance.

v0.2.0 [https://github.com/christophercrouzet/gorilla/compare/v0.1.0...v0.2.0] (2016-12-20)

Changed

	Rewrite everything from scratch. Changes are not backwards compatible.

v0.1.0 [https://github.com/christophercrouzet/gorilla/compare/v0.0.1...v0.1.0] (2014-06-29)

Added

	Add settings to modify the behaviour of the patching process.

	Added a FAQ section to the doc.

Changed

	Refactor the class ExtensionSet towards using an add() method.

	Clean-up the Extension.__init__() method from the parameters not required
to construct the class.

	Get the ExtensionsRegistrar.register_extensions() function to return a
single ExtensionSet object.

	Make minor tweaks to the code and documentation.

v0.0.1 (2014-06-21)

	Initial release.

Versioning

Version numbers comply with the Sementic Versioning Specification (SemVer) [http://semver.org].

In summary, version numbers are written in the form MAJOR.MINOR.PATCH
where:

	incompatible API changes increment the MAJOR version.

	functionalities added in a backwards-compatible manner increment the
MINOR version.

	backwards-compatible bug fixes increment the PATCH version.

Major version zero (0.y.z) is considered a special case denoting an initial
development phase. Anything may change at any time without the MAJOR version
being incremented.

License

The MIT License (MIT)

Copyright (c) 2014-2017 Christopher Crouzet

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Out There

Projects using Gorilla include:

	bana [https://github.com/christophercrouzet/bana]

	mlflow [https://github.com/mlflow/mlflow]

Index

 _
 | A
 | C
 | D
 | F
 | G
 | N
 | O
 | P
 | R
 | S

_

 	
 	__init__() (gorilla.DecoratorData method)

 	(gorilla.Patch method)

 	(gorilla.Settings method)

A

 	
 	allow_hit (gorilla.Settings attribute)

 	
 	apply() (in module gorilla)

C

 	
 	create_patches() (in module gorilla)

D

 	
 	DecoratorData (class in gorilla)

 	default_filter() (in module gorilla)

 	
 	destination (gorilla.Patch attribute)

 	destination() (in module gorilla)

F

 	
 	filter (gorilla.DecoratorData attribute)

 	
 	filter() (in module gorilla)

 	find_patches() (in module gorilla)

G

 	
 	get_attribute() (in module gorilla)

 	
 	get_decorator_data() (in module gorilla)

 	get_original_attribute() (in module gorilla)

N

 	
 	name (gorilla.Patch attribute)

 	
 	name() (in module gorilla)

O

 	
 	obj (gorilla.Patch attribute)

 	
 	override (gorilla.DecoratorData attribute)

P

 	
 	Patch (class in gorilla)

 	patch() (in module gorilla)

 	
 	patches (gorilla.DecoratorData attribute)

 	patches() (in module gorilla)

R

 	
 	revert() (in module gorilla)

S

 	
 	Settings (class in gorilla)

 	settings (gorilla.Patch attribute)

 	
 	settings() (in module gorilla)

 	store_hit (gorilla.Settings attribute)

 Source code for gorilla

-*- coding: utf-8 -*-

__ __ __
.-----.-----.----|__| | .---.-.
| _ | _ | _| | | | _ |
|___ |_____|__| |__|__|__|___._|
|_____|
#

"""Convenient approach to monkey patching."""

from __future__ import (
 absolute_import,
 division,
 print_function,
 unicode_literals,
)

__all__ = ['default_filter', 'DecoratorData', 'Settings', 'Patch', 'apply',
 'patch', 'patches', 'destination', 'name', 'settings', 'filter',
 'create_patches', 'find_patches', 'get_attribute',
 'get_original_attribute', 'get_decorator_data']

__title__ = 'gorilla'
__version__ = '0.4.0'
__summary__ = "Convenient approach to monkey patching"
__url__ = 'https://github.com/christophercrouzet/gorilla'
__author__ = "Christopher Crouzet"
__contact__ = 'christopher@crouzet.pm'
__license__ = "MIT"

import collections
import copy
import inspect
import pkgutil
import sys
import types

if sys.version_info[0] == 2:
 _CLASS_TYPES = (type, types.ClassType)

 def _iteritems(d, **kwargs):
 return d.iteritems(**kwargs)

 def _load_module(finder, name):
 loader = finder.find_module(name)
 return loader.load_module(name)
else:
 _CLASS_TYPES = (type,)

 def _iteritems(d, **kwargs):
 return iter(d.items(**kwargs))

 def _load_module(finder, name):
 loader, _ = finder.find_loader(name)
 return loader.load_module()

Pattern for each internal attribute name.
_PATTERN = '_gorilla_{}'

Pattern for the flag expressing whether an attribute was created.
_CREATED = _PATTERN.format('created_{}')

Pattern for the ids of the original attributes stored.
_ORIGINAL_IDS = _PATTERN.format('ids_{}')

Pattern for each original attribute stored.
_ORIGINAL_ITEM = _PATTERN.format('item_{}_{}')

Attribute for the decorator data.
_DECORATOR_DATA = _PATTERN.format('decorator_data')

[docs]def default_filter(name, obj):
 """Attribute filter.

 It filters out module attributes, and also methods starting with an
 underscore ``_``.

 This is used as the default filter for the :func:`create_patches` function
 and the :func:`patches` decorator.

 Parameters

 name : str
 Attribute name.
 obj : object
 Attribute value.

 Returns

 bool
 Whether the attribute should be returned.
 """
 return not (isinstance(obj, types.ModuleType) or name.startswith('_'))

[docs]class DecoratorData(object):
 """Decorator data.

 Attributes

 patches : list of gorilla.Patch
 Patches created through the decorators.
 override : dict
 Any overriding value defined by the :func:`destination`, :func:`name`,
 and :func:`settings` decorators.
 filter : bool or None
 Value defined by the :func:`filter` decorator, if any, or ``None``
 otherwise.
 """

[docs] def __init__(self):
 """Constructor."""
 self.patches = []
 self.override = {}
 self.filter = None

[docs]class Settings(object):
 """Define the patching behaviour.

 Attributes

 allow_hit : bool
 A hit occurs when an attribute at the destination already exists with
 the name given by the patch. If ``False``, the patch process won't
 allow setting a new value for the attribute by raising an exception.
 Defaults to ``False``.
 store_hit : bool
 If ``True`` and :attr:`allow_hit` is also set to ``True``, then any
 attribute at the destination that is hit is stored under a different
 name before being overwritten by the patch. Defaults to ``True``.
 """

[docs] def __init__(self, **kwargs):
 """Constructor.

 Parameters

 kwargs
 Keyword arguments, see the attributes.
 """
 self.allow_hit = False
 self.store_hit = True
 self._update(**kwargs)

 def __repr__(self):
 values = ', '.join([
 '{}={!r}'.format(key, value)
 for key, value in sorted(_iteritems(self.__dict__))])
 return '{}({})'.format(type(self).__name__, values)

 def __hash__(self):
 return hash(sorted(_iteritems(self.__dict__)))

 def __eq__(self, other):
 if isinstance(other, type(self)):
 return self.__dict__ == other.__dict__

 return NotImplemented

 def __ne__(self, other):
 is_equal = self.__eq__(other)
 return is_equal if is_equal is NotImplemented else not is_equal

 def _update(self, **kwargs):
 """Update some settings."""
 self.__dict__.update(**kwargs)

[docs]class Patch(object):
 """Describe all the information required to apply a patch.

 Attributes

 destination : obj
 Patch destination.
 name : str
 Name of the attribute at the destination.
 obj : obj
 Attribute value.
 settings : gorilla.Settings or None
 Settings. If ``None``, the default settings are used.

 Warning

 It is highly recommended to use the output of the function
 :func:`get_attribute` for setting the attribute :attr:`obj`. This will
 ensure that the descriptor protocol is bypassed instead of possibly
 retrieving attributes invalid for patching, such as bound methods.
 """

[docs] def __init__(self, destination, name, obj, settings=None):
 """Constructor.

 Parameters

 destination : object
 See the :attr:`~Patch.destination` attribute.
 name : str
 See the :attr:`~Patch.name` attribute.
 obj : object
 See the :attr:`~Patch.obj` attribute.
 settings : gorilla.Settings
 See the :attr:`~Patch.settings` attribute.
 """
 self.destination = destination
 self.name = name
 self.obj = obj
 self.settings = settings

 def __repr__(self):
 return (
 '{}(destination={!r}, name={!r}, obj={!r}, settings={!r})'
 .format(
 type(self).__name__, self.destination, self.name, self.obj,
 self.settings))

 def __hash__(self):
 return hash(sorted(_iteritems(self.__dict__)))

 def __eq__(self, other):
 if isinstance(other, type(self)):
 return self.__dict__ == other.__dict__

 return NotImplemented

 def __ne__(self, other):
 is_equal = self.__eq__(other)
 return is_equal if is_equal is NotImplemented else not is_equal

 def _update(self, **kwargs):
 """Update some attributes.

 If a 'settings' attribute is passed as a dict, then it updates the
 content of the settings, if any, instead of completely overwriting it.
 """
 for key, value in _iteritems(kwargs):
 if key == 'settings':
 if isinstance(value, dict):
 if self.settings is None:
 self.settings = Settings(**value)
 else:
 self.settings._update(**value)
 else:
 self.settings = copy.deepcopy(value)
 else:
 setattr(self, key, value)

[docs]def apply(patch, id='default'):
 """Apply a patch.

 The patch's :attr:`~Patch.obj` attribute is injected into the patch's
 :attr:`~Patch.destination` under the patch's :attr:`~Patch.name`.

 This is a wrapper around calling
 ``setattr(patch.destination, patch.name, patch.obj)``.

 Parameters

 patch : gorilla.Patch
 Patch.
 id : str
 When applying a stack of patches on top of a same attribute, this
 identifier allows to pinpoint a specific original attribute if needed.

 Raises

 RuntimeError
 Overwriting an existing attribute is not allowed when the setting
 :attr:`Settings.allow_hit` is set to ``True``.

 Note

 If both the attributes :attr:`Settings.allow_hit` and
 :attr:`Settings.store_hit` are ``True`` but that the target attribute seems
 to have already been stored, then it won't be stored again to avoid losing
 the original attribute that was stored the first time around.
 """
 settings = Settings() if patch.settings is None else patch.settings

 # When a hit occurs due to an attribute at the destination already existing
 # with the patch's name, the existing attribute is referred to as 'target'.
 try:
 target = get_attribute(patch.destination, patch.name)
 except AttributeError:
 created = _CREATED.format(patch.name)
 setattr(patch.destination, created, True)
 else:
 if not settings.allow_hit:
 raise RuntimeError(
 "An attribute named '{}' already exists at the destination "
 "'{}'. Set a different name through the patch object to avoid "
 "a name clash or set the setting 'allow_hit' to True to "
 "overwrite the attribute. In the latter case, it is "
 "recommended to also set the 'store_hit' setting to True in "
 "order to store the original attribute under a different "
 "name so it can still be accessed."
 .format(patch.name, patch.destination.__name__))

 if settings.store_hit:
 original_ids = _ORIGINAL_IDS.format(patch.name)
 ids = getattr(patch.destination, original_ids, ())

 original_item = _ORIGINAL_ITEM.format(patch.name, len(ids))
 setattr(patch.destination, original_item, target)

 ids += (id,)
 setattr(patch.destination, original_ids, ids)

 setattr(patch.destination, patch.name, patch.obj)

[docs]def revert(patch):
 """Revert a patch.

 Parameters

 patch : gorilla.Patch
 Patch.

 Note

 This is only possible if the attribute :attr:`Settings.store_hit` was set
 to ``True`` when applying the patch and overriding an existing attribute.
 """
 created = _CREATED.format(patch.name)
 if getattr(patch.destination, created, False):
 delattr(patch.destination, patch.name)
 return

 original_ids = _ORIGINAL_IDS.format(patch.name)
 try:
 ids = getattr(patch.destination, original_ids)
 if not ids:
 raise AttributeError
 except AttributeError:
 raise RuntimeError(
 "Cannot revert the attribute named '{}' since the setting "
 "'store_hit' was not set to True when applying the patch."
 .format(patch.destination.__name__))

 original_item = _ORIGINAL_ITEM.format(patch.name, len(ids) - 1)
 attr = getattr(patch.destination, original_item)
 setattr(patch.destination, patch.name, attr)
 delattr(patch.destination, original_item)
 setattr(patch.destination, original_ids, ids[:-1])

[docs]def patch(destination, name=None, settings=None):
 """Decorator to create a patch.

 The object being decorated becomes the :attr:`~Patch.obj` attribute of the
 patch.

 Parameters

 destination : object
 Patch destination.
 name : str
 Name of the attribute at the destination.
 settings : gorilla.Settings
 Settings.

 Returns

 object
 The decorated object.

 See Also

 :class:`Patch`.
 """
 def decorator(wrapped):
 base = _get_base(wrapped)
 name_ = base.__name__ if name is None else name
 settings_ = copy.deepcopy(settings)
 patch = Patch(destination, name_, wrapped, settings=settings_)
 data = get_decorator_data(base, set_default=True)
 data.patches.append(patch)
 return wrapped

 return decorator

[docs]def patches(destination, settings=None, traverse_bases=True,
 filter=default_filter, recursive=True, use_decorators=True):
 """Decorator to create a patch for each member of a module or a class.

 Parameters

 destination : object
 Patch destination.
 settings : gorilla.Settings
 Settings.
 traverse_bases : bool
 If the object is a class, the base classes are also traversed.
 filter : function
 Attributes for which the function returns ``False`` are skipped. The
 function needs to define two parameters: ``name``, the attribute name,
 and ``obj``, the attribute value. If ``None``, no attribute is skipped.
 recursive : bool
 If ``True``, and a hit occurs due to an attribute at the destination
 already existing with the given name, and both the member and the
 target attributes are classes, then instead of creating a patch
 directly with the member attribute value as is, a patch for each of its
 own members is created with the target as new destination.
 use_decorators : bool
 Allows to take any modifier decorator into consideration to allow for
 more granular customizations.

 Returns

 object
 The decorated object.

 Note

 A 'target' differs from a 'destination' in that a target represents an
 existing attribute at the destination about to be hit by a patch.

 See Also

 :class:`Patch`, :func:`create_patches`.
 """
 def decorator(wrapped):
 settings_ = copy.deepcopy(settings)
 patches = create_patches(
 destination, wrapped, settings=settings_,
 traverse_bases=traverse_bases, filter=filter, recursive=recursive,
 use_decorators=use_decorators)
 data = get_decorator_data(_get_base(wrapped), set_default=True)
 data.patches.extend(patches)
 return wrapped

 return decorator

[docs]def destination(value):
 """Modifier decorator to update a patch's destination.

 This only modifies the behaviour of the :func:`create_patches` function
 and the :func:`patches` decorator, given that their parameter
 ``use_decorators`` is set to ``True``.

 Parameters

 value : object
 Patch destination.

 Returns

 object
 The decorated object.
 """
 def decorator(wrapped):
 data = get_decorator_data(_get_base(wrapped), set_default=True)
 data.override['destination'] = value
 return wrapped

 return decorator

[docs]def name(value):
 """Modifier decorator to update a patch's name.

 This only modifies the behaviour of the :func:`create_patches` function
 and the :func:`patches` decorator, given that their parameter
 ``use_decorators`` is set to ``True``.

 Parameters

 value : object
 Patch name.

 Returns

 object
 The decorated object.
 """
 def decorator(wrapped):
 data = get_decorator_data(_get_base(wrapped), set_default=True)
 data.override['name'] = value
 return wrapped

 return decorator

[docs]def settings(**kwargs):
 """Modifier decorator to update a patch's settings.

 This only modifies the behaviour of the :func:`create_patches` function
 and the :func:`patches` decorator, given that their parameter
 ``use_decorators`` is set to ``True``.

 Parameters

 kwargs
 Settings to update. See :class:`Settings` for the list.

 Returns

 object
 The decorated object.
 """
 def decorator(wrapped):
 data = get_decorator_data(_get_base(wrapped), set_default=True)
 data.override.setdefault('settings', {}).update(kwargs)
 return wrapped

 return decorator

[docs]def filter(value):
 """Modifier decorator to force the inclusion or exclusion of an attribute.

 This only modifies the behaviour of the :func:`create_patches` function
 and the :func:`patches` decorator, given that their parameter
 ``use_decorators`` is set to ``True``.

 Parameters

 value : bool
 ``True`` to force inclusion, ``False`` to force exclusion, and ``None``
 to inherit from the behaviour defined by :func:`create_patches` or
 :func:`patches`.

 Returns

 object
 The decorated object.
 """
 def decorator(wrapped):
 data = get_decorator_data(_get_base(wrapped), set_default=True)
 data.filter = value
 return wrapped

 return decorator

[docs]def create_patches(destination, root, settings=None, traverse_bases=True,
 filter=default_filter, recursive=True, use_decorators=True):
 """Create a patch for each member of a module or a class.

 Parameters

 destination : object
 Patch destination.
 root : object
 Root object, either a module or a class.
 settings : gorilla.Settings
 Settings.
 traverse_bases : bool
 If the object is a class, the base classes are also traversed.
 filter : function
 Attributes for which the function returns ``False`` are skipped. The
 function needs to define two parameters: ``name``, the attribute name,
 and ``obj``, the attribute value. If ``None``, no attribute is skipped.
 recursive : bool
 If ``True``, and a hit occurs due to an attribute at the destination
 already existing with the given name, and both the member and the
 target attributes are classes, then instead of creating a patch
 directly with the member attribute value as is, a patch for each of its
 own members is created with the target as new destination.
 use_decorators : bool
 ``True`` to take any modifier decorator into consideration to allow for
 more granular customizations.

 Returns

 list of gorilla.Patch
 The patches.

 Note

 A 'target' differs from a 'destination' in that a target represents an
 existing attribute at the destination about to be hit by a patch.

 See Also

 :func:`patches`.
 """
 if filter is None:
 filter = _true

 out = []
 root_patch = Patch(destination, '', root, settings=settings)
 stack = collections.deque((root_patch,))
 while stack:
 parent_patch = stack.popleft()
 members = _get_members(parent_patch.obj, traverse_bases=traverse_bases,
 filter=None, recursive=False)
 for name, value in members:
 patch = Patch(parent_patch.destination, name, value,
 settings=copy.deepcopy(parent_patch.settings))
 if use_decorators:
 base = _get_base(value)
 decorator_data = get_decorator_data(base)
 filter_override = (None if decorator_data is None
 else decorator_data.filter)
 if ((filter_override is None and not filter(name, value))
 or filter_override is False):
 continue

 if decorator_data is not None:
 patch._update(**decorator_data.override)
 elif not filter(name, value):
 continue

 if recursive and isinstance(value, _CLASS_TYPES):
 try:
 target = get_attribute(patch.destination, patch.name)
 except AttributeError:
 pass
 else:
 if isinstance(target, _CLASS_TYPES):
 patch.destination = target
 stack.append(patch)
 continue

 out.append(patch)

 return out

[docs]def find_patches(modules, recursive=True):
 """Find all the patches created through decorators.

 Parameters

 modules : list of module
 Modules and/or packages to search the patches in.
 recursive : bool
 ``True`` to search recursively in subpackages.

 Returns

 list of gorilla.Patch
 Patches found.

 Raises

 TypeError
 The input is not a valid package or module.

 See Also

 :func:`patch`, :func:`patches`.
 """
 out = []
 modules = (module
 for package in modules
 for module in _module_iterator(package, recursive=recursive))
 for module in modules:
 members = _get_members(module, filter=None)
 for _, value in members:
 base = _get_base(value)
 decorator_data = get_decorator_data(base)
 if decorator_data is None:
 continue

 out.extend(decorator_data.patches)

 return out

[docs]def get_attribute(obj, name):
 """Retrieve an attribute while bypassing the descriptor protocol.

 As per the built-in |getattr()|_ function, if the input object is a class
 then its base classes might also be searched until the attribute is found.

 Parameters

 obj : object
 Object to search the attribute in.
 name : str
 Name of the attribute.

 Returns

 object
 The attribute found.

 Raises

 AttributeError
 The attribute couldn't be found.

 .. |getattr()| replace:: ``getattr()``
 .. _getattr(): https://docs.python.org/library/functions.html#getattr
 """
 objs = inspect.getmro(obj) if isinstance(obj, _CLASS_TYPES) else [obj]
 for obj_ in objs:
 try:
 return object.__getattribute__(obj_, name)
 except AttributeError:
 pass

 raise AttributeError("'{}' object has no attribute '{}'"
 .format(type(obj), name))

[docs]def get_original_attribute(obj, name, id='default'):
 """Retrieve an overriden attribute that has been stored.

 Parameters

 obj : object
 Object to search the attribute in.
 name : str
 Name of the attribute.
 id : str
 Identifier of the original attribute to retrieve from the stack.

 Returns

 object
 The attribute found.

 Raises

 AttributeError
 The attribute couldn't be found.

 See Also

 :attr:`Settings.allow_hit`.
 """
 original_ids = _ORIGINAL_IDS.format(name)
 try:
 ids = getattr(obj, original_ids)
 if not ids:
 raise AttributeError
 except AttributeError:
 raise AttributeError(
 "Cannot retrieve the attribute named '{}' since the setting "
 "'store_hit' was not set to True when applying the patch."
 .format(obj.__name__))

 for i, original_id in reversed(tuple(enumerate(ids))):
 if original_id == id:
 original_item = _ORIGINAL_ITEM.format(name, i)
 return getattr(obj, original_item)

 raise AttributeError(
 "No original attribute found matching the id '{}'.".format(id))

[docs]def get_decorator_data(obj, set_default=False):
 """Retrieve any decorator data from an object.

 Parameters

 obj : object
 Object.
 set_default : bool
 If no data is found, a default one is set on the object and returned,
 otherwise ``None`` is returned.

 Returns

 gorilla.DecoratorData
 The decorator data or ``None``.
 """
 if isinstance(obj, _CLASS_TYPES):
 datas = getattr(obj, _DECORATOR_DATA, {})
 data = datas.setdefault(obj, None)
 if data is None and set_default:
 data = DecoratorData()
 datas[obj] = data
 setattr(obj, _DECORATOR_DATA, datas)
 else:
 data = getattr(obj, _DECORATOR_DATA, None)
 if data is None and set_default:
 data = DecoratorData()
 setattr(obj, _DECORATOR_DATA, data)

 return data

def _get_base(obj):
 """Unwrap decorators to retrieve the base object."""
 if hasattr(obj, '__func__'):
 obj = obj.__func__
 elif isinstance(obj, property):
 obj = obj.fget
 elif isinstance(obj, (classmethod, staticmethod)):
 # Fallback for Python < 2.7 back when no `__func__` attribute
 # was defined for those descriptors.
 obj = obj.__get__(None, object)
 else:
 return obj

 return _get_base(obj)

def _get_members(obj, traverse_bases=True, filter=default_filter,
 recursive=True):
 """Retrieve the member attributes of a module or a class.

 The descriptor protocol is bypassed.
 """
 if filter is None:
 filter = _true

 out = []
 stack = collections.deque((obj,))
 while stack:
 obj = stack.popleft()
 if traverse_bases and isinstance(obj, _CLASS_TYPES):
 roots = [base for base in inspect.getmro(obj)
 if base not in (type, object)]
 else:
 roots = [obj]

 members = []
 seen = set()
 for root in roots:
 for name, value in _iteritems(getattr(root, '__dict__', {})):
 if name not in seen and filter(name, value):
 members.append((name, value))

 seen.add(name)

 members = sorted(members)
 for _, value in members:
 if recursive and isinstance(value, _CLASS_TYPES):
 stack.append(value)

 out.extend(members)

 return out

def _module_iterator(root, recursive=True):
 """Iterate over modules."""
 yield root

 stack = collections.deque((root,))
 while stack:
 package = stack.popleft()
 # The '__path__' attribute of a package might return a list of paths if
 # the package is referenced as a namespace.
 paths = getattr(package, '__path__', [])
 for path in paths:
 modules = pkgutil.iter_modules([path])
 for finder, name, is_package in modules:
 module_name = '{}.{}'.format(package.__name__, name)
 module = sys.modules.get(module_name, None)
 if module is None:
 # Import the module through the finder to support package
 # namespaces.
 module = _load_module(finder, module_name)

 if is_package:
 if recursive:
 stack.append(module)
 yield module
 else:
 yield module

def _true(*args, **kwargs):
 """Return ``True``."""
 return True

 All modules for which code is available

	gorilla

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Gorilla’s Documentation

 		
 Overview

 		
 Features

 		
 Usage

 		
 Installation

 		
 Installing pip

 		
 System-Wide Installation

 		
 Virtualenv

 		
 Development Version

 		
 Tutorial

 		
 Creating a Single Patch

 		
 Creating Multiple Patches at Once

 		
 Overwriting Attributes at the Destination

 		
 Stack Ordering

 		
 Finding and Applying the Patches

 		
 Dynamic Patching

 		
 A Word of Caution

 		
 API Reference

 		
 Core

 		
 Decorators

 		
 Utilities

 		
 Running the Tests

 		
 unittest

 		
 tox

 		
 coverage

 		
 Changelog

 		
 Unreleased

 		
 v0.4.0 (2021-04-17)

 		
 Added

 		
 Removed

 		
 Changed

 		
 Fixed

 		
 v0.3.0 (2017-01-18)

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v0.2.0 (2016-12-20)

 		
 Changed

 		
 v0.1.0 (2014-06-29)

 		
 Added

 		
 Changed

 		
 v0.0.1 (2014-06-21)

 		
 Versioning

 		
 License

 		
 Out There

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

