
gorilla Documentation
Release 0.4.0

Christopher Crouzet

Apr 17, 2021

Contents

1 User’s Guide 3
1.1 Overview . 3
1.2 Installation . 4
1.3 Tutorial . 5
1.4 A Word of Caution . 9
1.5 API Reference . 9

2 Developer’s Guide 17
2.1 Running the Tests . 17

3 Additional Information 19
3.1 Changelog . 19
3.2 Versioning . 21
3.3 License . 21
3.4 Out There . 22

Index 23

i

ii

gorilla Documentation, Release 0.4.0

Welcome! If you are just getting started, a recommended first read is the Overview as it shortly covers the why, what,
and how’s of this library. From there, the Installation then the Tutorial sections should get you up to speed with the
basics required to use it.

Looking how to use a specific function, class, or method? The whole public interface is described in the API Reference
section.

Please report bugs and suggestions on GitHub.

Contents 1

https://github.com/christophercrouzet/gorilla

gorilla Documentation, Release 0.4.0

2 Contents

CHAPTER 1

User’s Guide

1.1 Overview

Monkey patching is the process of modifying module and class attributes at runtime with the purpose of replacing
or extending third-party code.

Although not a recommended practice, it is sometimes useful to fix or modify the behaviour of a piece of code from a
third-party library, or to extend its public interface while making the additions feel like they are built-in into the library.

The Python language makes monkey patching extremely easy but the advantages of Gorilla are multiple, not only
in assuring a consistent behaviour on both Python 2 and Python 3 versions, but also in preventing common source
of errors, and making the process both intuitive and convenient even when faced with large numbers of patches to
create.

1.1.1 Features

• intuitive and convenient decorator approach to create patches.

• can create patches for all class or module members at once.

• compatible with both Python 2 and Python 3.

• customizable behaviour.

1.1.2 Usage

Thanks to the dynamic nature of Python that makes monkey patching possible, the process happens at runtime without
ever having to directly modify the source code of the third-party library:

>>> import gorilla
>>> import destination
>>> @gorilla.patches(destination.Class)
... class MyClass(object):

(continues on next page)

3

gorilla Documentation, Release 0.4.0

(continued from previous page)

... def method(self):

... print("Hello")

... @classmethod

... def class_method(cls):

... print("world!")

The code above creates two patches, one for each member of the class MyClass, but does not apply them yet. In
other words, they define the information required to carry on the operation but are not yet inserted into the specified
destination class destination.Class.

Such patches created with the decorators can then be automatically retrieved by recursively scanning a package or a
module, then applied:

>>> import gorilla
>>> import mypackage
>>> patches = gorilla.find_patches([mypackage])
>>> for patch in patches:
... gorilla.apply(patch)

See also:

The Tutorial section for more detailed examples and explanations on how to use Gorilla.

1.2 Installation

Gorilla doesn’t have any requirement outside of the Python interpreter. Any of the following Python versions is
supported: 2.7, 3.3, 3.4, 3.5, and 3.6.

1.2.1 Installing pip

The recommended1 approach for installing a Python package such as Gorilla is to use pip, a package manager for
projects written in Python. If pip is not already installed on your system, you can do so by following these steps:

1. Download get-pip.py.

2. Run python get-pip.py in a shell.

Note: The installation commands described in this page might require sudo privileges to run successfully.

1.2.2 System-Wide Installation

Installing globally the most recent version of Gorilla can be done with pip:

$ pip install gorilla

Or using easy_install (provided with setuptools):

$ easy_install gorilla

1 See the Python Packaging User Guide

4 Chapter 1. User’s Guide

https://pip.pypa.io
https://raw.github.com/pypa/pip/master/contrib/get-pip.py
https://setuptools.readthedocs.io/en/latest/easy_install.html
https://github.com/pypa/setuptools
https://packaging.python.org/current/

gorilla Documentation, Release 0.4.0

1.2.3 Virtualenv

If you’d rather make Gorilla only available for your specific project, an alternative approach is to use virtualenv.
First, make sure that it is installed:

$ pip install virtualenv

Then, an isolated environment needs to be created for your project before installing Gorilla in there:

$ mkdir myproject
$ cd myproject
$ virtualenv env
New python executable in /path/to/myproject/env/bin/python
Installing setuptools, pip, wheel...done.
$ source env/bin/activate
$ pip install gorilla

At this point, Gorilla is available for the project myproject as long as the virtual environment is activated.

To exit the virtual environment, run:

$ deactivate

Note: Instead of having to activate the virtual environment, it is also possible to directly use the env/bin/python,
env/bin/pip, and the other executables found in the folder env/bin.

Note: For Windows, some code samples might not work out of the box. Mainly, activating virtualenv is done by
running the command env\Scripts\activate instead.

1.2.4 Development Version

To stay cutting edge with the latest development progresses, it is possible to directly retrieve the source from the
repository with the help of Git:

$ git clone https://github.com/christophercrouzet/gorilla.git
$ cd gorilla
$ pip install --editable .[dev]

Note: The [dev] part installs additional dependencies required to assist development on Gorilla.

1.3 Tutorial

In the end Gorilla is nothing more than a fancy wrapper around Python’s setattr() function and thus requires to
define patches, represented by the class Patch, containing the destination object, the attribute name at the destination,
and the actual value to set.

1.3. Tutorial 5

https://virtualenv.pypa.io
https://git-scm.com
https://docs.python.org/library/functions.html#setattr

gorilla Documentation, Release 0.4.0

The Patch class can be used directly if the patching information are only known at runtime, as described in the
section Dynamic Patching, but otherwise a set of decorators are available to make the whole process more intuitive
and convenient.

The recommended approach involving decorators is to be done in two steps:

• create a single patch with the patch() decorator and/or multiple patches using patches().

• find and apply the patches through the find_patches() and apply() functions.

1.3.1 Creating a Single Patch

In order to make a function my_function() available from within a third-party module destination, the first
step is to create a new patch by decorating our function:

>>> import gorilla
>>> import destination
>>> @gorilla.patch(destination)
... def my_function():
... print("Hello world!")

This step only creates the Patch object containing the patch information but does not inject the function into the
destination module just yet. The apply() function needs to be called for that to happen, as shown in the section
Finding and Applying the Patches.

The defaut behaviour is for the patch to inject the function at the destination using the name of the decorated object,
that is 'my_function'. If a different name is desired but changing the function name is not possible, then it can be
done via the parameter name:

>>> import gorilla
>>> import destination
>>> @gorilla.patch(destination, name='better_function')
... def my_function():
... print("Hello world!")

After applying the patch, the function will become accessible through a call to destination.
better_function().

A patch’s destination can not only be a module as shown above, but also an existing class:

>>> import gorilla
>>> import destination
>>> @gorilla.patch(destination.Class)
... def my_method(self):
... print("Hello")
>>> @gorilla.patch(destination.Class)
... @classmethod
... def my_class_method(cls):
... print("world!")

1.3.2 Creating Multiple Patches at Once

As the number of patches grows, the process of defining a decorator for each individual patch can quickly become cum-
bersome. Instead, another decorator patches() is available to create a batch of patches (tongue-twister challenge:
repeat “batch of patches” 10 times):

6 Chapter 1. User’s Guide

gorilla Documentation, Release 0.4.0

>>> import gorilla
>>> import destination
>>> @gorilla.patches(destination.Class)
... class MyClass(object):
... def method(self):
... print("Hello")
... @classmethod
... def class_method(cls):
... print("world")
... @staticmethod
... def static_method():
... print("!")

The patches() decorator iterates through all the members of the decorated class, by default filtered using the
default_filter() function, while creating a patch for each of them.

Each patch created in this manner inherits the properties defined by the root decorator but it is still possible to override
them using any of the destination(), name(), settings(), and filter() modifier decorators:

>>> import gorilla
>>> import destination
>>> @gorilla.patches(destination.Class)
... class MyClass(object):
... @gorilla.name('better_method')
... def method(self):
... print("Hello")
... @gorilla.settings(allow_hit=True)
... @classmethod
... def class_method(cls):
... print("world")
... @gorilla.filter(False)
... @staticmethod
... def static_method():
... print("!")

In the example above, the method’s name is overriden to 'better_method', the class method is allowed to over-
write an attribute with the same name at the destination, and the static method is to be filtered out during the discovery
process described in Finding and Applying the Patches, leading to no patch being created for it.

Note: The same operation can also be used to create a patch for each member of a module but, since it is not possible
to decorate a module, the function create_patches() needs to be directly used instead.

1.3.3 Overwriting Attributes at the Destination

If there was to be an attribute at the patch’s destination already existing with the patch’s name, then the patching
process can optionally override the original attribute after storing a copy of it. This way, the original attribtue remains
accessible from within our code with the help of the get_original_attribute() function:

>>> import gorilla
>>> import destination
>>> settings = gorilla.Settings(allow_hit=True)
>>> @gorilla.patch(destination, settings=settings)
... def function():
... print("Hello world!")

(continues on next page)

1.3. Tutorial 7

gorilla Documentation, Release 0.4.0

(continued from previous page)

... # We're overwriting an existing function here,

... # preserve its original behaviour.

... original = gorilla.get_original_attribute(destination, 'function')

... return original()

Note: The default settings of a patch do not allow attributes at the destination to be overwritten. For such a behaviour,
the attribute Settings.allow_hit needs to be set to True.

1.3.4 Stack Ordering

The order in which the decorators are applied does matter. The patch() decorator can only be aware of the decorators
defined below it.

>>> import gorilla
>>> import destination
>>> @gorilla.patch(destination.Class)
... @staticmethod
... def my_static_method_1():
... print("Hello")
>>> @staticmethod
... @gorilla.patch(destination.Class)
... def my_static_method_2():
... print("world!")

Here, only the static method my_static_method_1() will be injected as expected with the decorator
staticmethod while the other one will result in an invalid definition since it will be interpreted as a standard
method but doesn’t define any parameter referring to the class object such as self.

1.3.5 Finding and Applying the Patches

Once that the patches are created with the help of the decorators, the next step is to (recursively) scan the modules and
packages to retrieve them. This is easily achieved with the find_patches() function.

Finally, each patch can be applied using the apply() function.

>>> import gorilla
>>> import mypackage
>>> patches = gorilla.find_patches([mypackage])
>>> for patch in patches:
... gorilla.apply(patch)

1.3.6 Dynamic Patching

In the case where patches need to be created dynamically, meaning that the patch source objects and/or destinations
are not known until runtime, then it is possible to directly use the Patch class.

>>> import gorilla
>>> import destination
>>> def my_function():
... print("Hello world!")

(continues on next page)

8 Chapter 1. User’s Guide

gorilla Documentation, Release 0.4.0

(continued from previous page)

>>> patch = gorilla.Patch(destination, 'better_function', my_function)
>>> gorilla.apply(patch)

Note: Special precaution is advised when directly setting the Patch.obj attribute. See the warning note in the
class Patch for more details.

1.4 A Word of Caution

The process of Monkey Patching is at the same time both incredibly powerful and dangerous. It makes it easy to
improve things on the surface but makes it even easier to cause troubles if done inappropriately.

Mostly, inserting new attributes by prefixing their name to avoid (future?) name clashes is usually fine, but replacing
existing attributes should be avoided like the plague unless you really have to and know what you are doing. That
is, if you do not want ending up being fired because you broke everyone else’s code.

As a safety measure, Gorilla has its Settings.allow_hit attribute set to False by default, which raises an
exception whenever it detects an attempt at overwriting an existing attribute.

If you still want to go ahead with allowing hits, a second measure enabled by default through the Settings.
store_hit attribute is to store the overwriten attribute under a different name to have it still accessible using the
function get_original_attribute().

But still, avoid it if you can.

You’ve been warned.

1.5 API Reference

The whole public interface of Gorilla is described here.

All of the library’s content is accessible from within the only module gorilla.

The classes Settings, Patch, and the function apply form the core of the library and cover all the requirements
for monkey patching.

For intuitivity and convenience reasons, decorators and utility functions are also provided.

1.5.1 Core

Settings Define the patching behaviour.
Patch Describe all the information required to apply a patch.
apply Apply a patch.

class gorilla.Settings(**kwargs)
Define the patching behaviour.

allow_hit
A hit occurs when an attribute at the destination already exists with the name given by the patch. If False,

1.5. API Reference 9

gorilla Documentation, Release 0.4.0

the patch process won’t allow setting a new value for the attribute by raising an exception. Defaults to
False.

Type bool

store_hit
If True and allow_hit is also set to True, then any attribute at the destination that is hit is stored
under a different name before being overwritten by the patch. Defaults to True.

Type bool

__init__(**kwargs)
Constructor.

Parameters kwargs – Keyword arguments, see the attributes.

class gorilla.Patch(destination, name, obj, settings=None)
Describe all the information required to apply a patch.

destination
Patch destination.

Type obj

name
Name of the attribute at the destination.

Type str

obj
Attribute value.

Type obj

settings
Settings. If None, the default settings are used.

Type gorilla.Settings or None

Warning: It is highly recommended to use the output of the function get_attribute() for setting
the attribute obj. This will ensure that the descriptor protocol is bypassed instead of possibly retrieving
attributes invalid for patching, such as bound methods.

__init__(destination, name, obj, settings=None)
Constructor.

Parameters

• destination (object) – See the destination attribute.

• name (str) – See the name attribute.

• obj (object) – See the obj attribute.

• settings (gorilla.Settings) – See the settings attribute.

10 Chapter 1. User’s Guide

gorilla Documentation, Release 0.4.0

gorilla.apply(patch, id=’default’)
Apply a patch.

The patch’s obj attribute is injected into the patch’s destination under the patch’s name.

This is a wrapper around calling setattr(patch.destination, patch.name, patch.obj).

Parameters

• patch (gorilla.Patch) – Patch.

• id (str) – When applying a stack of patches on top of a same attribute, this identifier
allows to pinpoint a specific original attribute if needed.

Raises RuntimeError – Overwriting an existing attribute is not allowed when the setting
Settings.allow_hit is set to True.

Note: If both the attributes Settings.allow_hit and Settings.store_hit are True but that the
target attribute seems to have already been stored, then it won’t be stored again to avoid losing the original
attribute that was stored the first time around.

gorilla.revert(patch)
Revert a patch.

Parameters patch (gorilla.Patch) – Patch.

Note: This is only possible if the attribute Settings.store_hit was set to True when applying the patch
and overriding an existing attribute.

1.5.2 Decorators

patch Decorator to create a patch.
patches Decorator to create a patch for each member of a module

or a class.
destination Modifier decorator to update a patch’s destination.
name Modifier decorator to update a patch’s name.
settings Modifier decorator to update a patch’s settings.
filter Modifier decorator to force the inclusion or exclusion of

an attribute.

gorilla.patch(destination, name=None, settings=None)
Decorator to create a patch.

The object being decorated becomes the obj attribute of the patch.

Parameters

• destination (object) – Patch destination.

• name (str) – Name of the attribute at the destination.

• settings (gorilla.Settings) – Settings.

1.5. API Reference 11

gorilla Documentation, Release 0.4.0

Returns The decorated object.

Return type object

See also:

Patch

gorilla.patches(destination, settings=None, traverse_bases=True, filter=<function default_filter>, re-
cursive=True, use_decorators=True)

Decorator to create a patch for each member of a module or a class.

Parameters

• destination (object) – Patch destination.

• settings (gorilla.Settings) – Settings.

• traverse_bases (bool) – If the object is a class, the base classes are also traversed.

• filter (function) – Attributes for which the function returns False are skipped. The
function needs to define two parameters: name, the attribute name, and obj, the attribute
value. If None, no attribute is skipped.

• recursive (bool) – If True, and a hit occurs due to an attribute at the destination
already existing with the given name, and both the member and the target attributes are
classes, then instead of creating a patch directly with the member attribute value as is, a
patch for each of its own members is created with the target as new destination.

• use_decorators (bool) – Allows to take any modifier decorator into consideration to
allow for more granular customizations.

Returns The decorated object.

Return type object

Note: A ‘target’ differs from a ‘destination’ in that a target represents an existing attribute at the destination
about to be hit by a patch.

See also:

Patch, create_patches()

gorilla.destination(value)
Modifier decorator to update a patch’s destination.

This only modifies the behaviour of the create_patches() function and the patches() decorator, given
that their parameter use_decorators is set to True.

Parameters value (object) – Patch destination.

Returns The decorated object.

Return type object

gorilla.name(value)
Modifier decorator to update a patch’s name.

This only modifies the behaviour of the create_patches() function and the patches() decorator, given
that their parameter use_decorators is set to True.

12 Chapter 1. User’s Guide

gorilla Documentation, Release 0.4.0

Parameters value (object) – Patch name.

Returns The decorated object.

Return type object

gorilla.settings(**kwargs)
Modifier decorator to update a patch’s settings.

This only modifies the behaviour of the create_patches() function and the patches() decorator, given
that their parameter use_decorators is set to True.

Parameters kwargs – Settings to update. See Settings for the list.

Returns The decorated object.

Return type object

gorilla.filter(value)
Modifier decorator to force the inclusion or exclusion of an attribute.

This only modifies the behaviour of the create_patches() function and the patches() decorator, given
that their parameter use_decorators is set to True.

Parameters value (bool) – True to force inclusion, False to force exclusion, and None to
inherit from the behaviour defined by create_patches() or patches().

Returns The decorated object.

Return type object

1.5.3 Utilities

default_filter Attribute filter.
create_patches Create a patch for each member of a module or a class.
find_patches Find all the patches created through decorators.
get_attribute Retrieve an attribute while bypassing the descriptor pro-

tocol.
get_original_attribute Retrieve an overriden attribute that has been stored.
DecoratorData Decorator data.
get_decorator_data Retrieve any decorator data from an object.

gorilla.default_filter(name, obj)
Attribute filter.

It filters out module attributes, and also methods starting with an underscore _.

This is used as the default filter for the create_patches() function and the patches() decorator.

Parameters

• name (str) – Attribute name.

• obj (object) – Attribute value.

Returns Whether the attribute should be returned.

1.5. API Reference 13

gorilla Documentation, Release 0.4.0

Return type bool

gorilla.create_patches(destination, root, settings=None, traverse_bases=True, filter=<function de-
fault_filter>, recursive=True, use_decorators=True)

Create a patch for each member of a module or a class.

Parameters

• destination (object) – Patch destination.

• root (object) – Root object, either a module or a class.

• settings (gorilla.Settings) – Settings.

• traverse_bases (bool) – If the object is a class, the base classes are also traversed.

• filter (function) – Attributes for which the function returns False are skipped. The
function needs to define two parameters: name, the attribute name, and obj, the attribute
value. If None, no attribute is skipped.

• recursive (bool) – If True, and a hit occurs due to an attribute at the destination
already existing with the given name, and both the member and the target attributes are
classes, then instead of creating a patch directly with the member attribute value as is, a
patch for each of its own members is created with the target as new destination.

• use_decorators (bool) – True to take any modifier decorator into consideration to
allow for more granular customizations.

Returns The patches.

Return type list of gorilla.Patch

Note: A ‘target’ differs from a ‘destination’ in that a target represents an existing attribute at the destination
about to be hit by a patch.

See also:

patches()

gorilla.find_patches(modules, recursive=True)
Find all the patches created through decorators.

Parameters

• modules (list of module) – Modules and/or packages to search the patches in.

• recursive (bool) – True to search recursively in subpackages.

Returns Patches found.

Return type list of gorilla.Patch

Raises TypeError – The input is not a valid package or module.

See also:

patch(), patches()

14 Chapter 1. User’s Guide

gorilla Documentation, Release 0.4.0

gorilla.get_attribute(obj, name)
Retrieve an attribute while bypassing the descriptor protocol.

As per the built-in getattr() function, if the input object is a class then its base classes might also be searched
until the attribute is found.

Parameters

• obj (object) – Object to search the attribute in.

• name (str) – Name of the attribute.

Returns The attribute found.

Return type object

Raises AttributeError – The attribute couldn’t be found.

gorilla.get_original_attribute(obj, name, id=’default’)
Retrieve an overriden attribute that has been stored.

Parameters

• obj (object) – Object to search the attribute in.

• name (str) – Name of the attribute.

• id (str) – Identifier of the original attribute to retrieve from the stack.

Returns The attribute found.

Return type object

Raises AttributeError – The attribute couldn’t be found.

See also:

Settings.allow_hit

class gorilla.DecoratorData
Decorator data.

patches
Patches created through the decorators.

Type list of gorilla.Patch

override
Any overriding value defined by the destination(), name(), and settings() decorators.

Type dict

filter
Value defined by the filter() decorator, if any, or None otherwise.

Type bool or None

__init__()
Constructor.

gorilla.get_decorator_data(obj, set_default=False)
Retrieve any decorator data from an object.

1.5. API Reference 15

https://docs.python.org/library/functions.html#getattr

gorilla Documentation, Release 0.4.0

Parameters

• obj (object) – Object.

• set_default (bool) – If no data is found, a default one is set on the object and returned,
otherwise None is returned.

Returns The decorator data or None.

Return type gorilla.DecoratorData

16 Chapter 1. User’s Guide

CHAPTER 2

Developer’s Guide

2.1 Running the Tests

After making any code change in Gorilla, tests need to be evaluated to ensure that the library still behaves as expected.

Note: Some of the commands below are wrapped into make targets for convenience, see the file Makefile.

2.1.1 unittest

The tests are written using Python’s built-in unittest module. They are available in the tests directory and can
be fired through the tests/run.py file:

$ python tests/run.py

It is possible to run specific tests by passing a space-separated list of partial names to match:

$ python tests/run.py ThisTestClass and_that_function

The unittest’s command line interface is also supported:

$ python -m unittest discover -s tests -v

Finally, each test file is a standalone and can be directly executed.

2.1.2 tox

Test environments have been set-up with tox to allow testing Gorilla against each supported version of Python:

$ tox

17

https://docs.python.org/library/unittest.html
https://tox.readthedocs.io

gorilla Documentation, Release 0.4.0

2.1.3 coverage

The package coverage is used to help localize code snippets that could benefit from having some more testing:

$ coverage run --source gorilla -m unittest discover -s tests
$ coverage report
$ coverage html

In no way should coverage be a race to the 100% mark since it is not always meaningful to cover each single
line of code. Furthermore, having some code fully covered isn’t synonym to having quality tests. This is our
responsability, as developers, to write each test properly regardless of the coverage status.

18 Chapter 2. Developer’s Guide

https://coverage.readthedocs.io

CHAPTER 3

Additional Information

3.1 Changelog

Version numbers comply with the Sementic Versioning Specification (SemVer).

3.1.1 Unreleased

3.1.2 v0.4.0 (2021-04-17)

Added

• Implement a new public function to revert a patch.

• Support applying stacks of patches.

• Include the utf-8 shebang to all source files.

• Enforce Python 3 compatibility with the __future__ module.

• Testing with Python versions 3.7, 3,8, and 3.9.

• Set the __all__ attribute.

• Make use of styling and linting tools.

Removed

• Testing with Python version 3.3.

• Testing of the representation outputs.

19

http://semver.org

gorilla Documentation, Release 0.4.0

Changed

• Update the setup file.

• Rework the project’s metadata.

• Shorten docstrings for non-public functions.

• Make minor tweaks to the code.

• Use the ‘new’ string formatting method.

• Update the contact’s email.

Fixed

• Fix __weakref__ showing up in the doc.

• Fix the changelog reference.

3.1.3 v0.3.0 (2017-01-18)

Added

• Add the decorator data to the public interface.

• Add support for coverage and tox.

• Add continuous integration with Travis and coveralls.

• Add a few bling-bling badges to the readme.

• Add a Makefile to regroup common actions for developers.

Changed

• Improve the documentation.

• Improve the unit testing workflow.

• Remove the __slots__ attribute from the Settings and Patch classes.

• Refocus the content of the readme.

• Define the ‘long_description’ and ‘extras_require’ metadata to setuptools’ setup.

• Update the documentation’s Makefile with a simpler template.

• Rework the ‘.gitignore’ files.

• Rename the changelog to ‘CHANGELOG’!

• Make minor tweaks to the code.

Fixed

• Fix the settings not being properly inherited.

• Fix the decorator data not supporting class inheritance.

20 Chapter 3. Additional Information

gorilla Documentation, Release 0.4.0

3.1.4 v0.2.0 (2016-12-20)

Changed

• Rewrite everything from scratch. Changes are not backwards compatible.

3.1.5 v0.1.0 (2014-06-29)

Added

• Add settings to modify the behaviour of the patching process.

• Added a FAQ section to the doc.

Changed

• Refactor the class ExtensionSet towards using an add() method.

• Clean-up the Extension.__init__() method from the parameters not required to construct the class.

• Get the ExtensionsRegistrar.register_extensions() function to return a single
ExtensionSet object.

• Make minor tweaks to the code and documentation.

3.1.6 v0.0.1 (2014-06-21)

• Initial release.

3.2 Versioning

Version numbers comply with the Sementic Versioning Specification (SemVer).

In summary, version numbers are written in the form MAJOR.MINOR.PATCH where:

• incompatible API changes increment the MAJOR version.

• functionalities added in a backwards-compatible manner increment the MINOR version.

• backwards-compatible bug fixes increment the PATCH version.

Major version zero (0.y.z) is considered a special case denoting an initial development phase. Anything may change
at any time without the MAJOR version being incremented.

3.3 License

The MIT License (MIT)

Copyright (c) 2014-2017 Christopher Crouzet

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,

3.2. Versioning 21

http://semver.org

gorilla Documentation, Release 0.4.0

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.4 Out There

Projects using Gorilla include:

• bana

• mlflow

22 Chapter 3. Additional Information

https://github.com/christophercrouzet/bana
https://github.com/mlflow/mlflow

Index

Symbols
__init__() (gorilla.DecoratorData method), 15
__init__() (gorilla.Patch method), 10
__init__() (gorilla.Settings method), 10

A
allow_hit (gorilla.Settings attribute), 9
apply() (in module gorilla), 10

C
create_patches() (in module gorilla), 14

D
DecoratorData (class in gorilla), 15
default_filter() (in module gorilla), 13
destination (gorilla.Patch attribute), 10
destination() (in module gorilla), 12

F
filter (gorilla.DecoratorData attribute), 15
filter() (in module gorilla), 13
find_patches() (in module gorilla), 14

G
get_attribute() (in module gorilla), 14
get_decorator_data() (in module gorilla), 15
get_original_attribute() (in module gorilla),

15

N
name (gorilla.Patch attribute), 10
name() (in module gorilla), 12

O
obj (gorilla.Patch attribute), 10
override (gorilla.DecoratorData attribute), 15

P
Patch (class in gorilla), 10

patch() (in module gorilla), 11
patches (gorilla.DecoratorData attribute), 15
patches() (in module gorilla), 12

R
revert() (in module gorilla), 11

S
Settings (class in gorilla), 9
settings (gorilla.Patch attribute), 10
settings() (in module gorilla), 13
store_hit (gorilla.Settings attribute), 10

23

	User’s Guide
	Overview
	Installation
	Tutorial
	A Word of Caution
	API Reference

	Developer’s Guide
	Running the Tests

	Additional Information
	Changelog
	Versioning
	License
	Out There

	Index

